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LOWER BOUNDS FOR THE DISCREPANCY 
OF INVERSIVE CONGRUENTIAL PSEUDORANDOM NUMBERS 

HARALD NIEDERREITER 

ABSTRACT. The inversive congruential method is a uniform pseudorandom 
number generator which was introduced recently. For a prime modulus p the 
discrepancy D(k) of k-tuples of successive pseudorandom numbers generated 
by this method determines the statistical independence properties of these pseu- 
dorandom numbers. It was shown earlier by the author that 

D(k) - O(p-1/2(logp)k) for 2 < k <p. 
p 

Here it is proved that this bound is essentially best possible. In fact, for a 
positive proportion of the admissible parameters in the inversive congruential 
method the discrepancy D(k) is at least of the order of magnitude p-1/2 for 
all k > 2. 

1. INTRODUCTION AND STATEMENT OF RESULTS 

The well-known deficiencies of the linear congruential method for the gener- 
ation of uniform pseudorandom numbers, such as the relatively coarse lattice 
structure of linear congruential pseudorandom numbers, have prompted recent 
efforts at devising methods with more favorable properties. One way of break- 
ing up the lattice structure is to use a congruential method with a nonlinear 
recursion. A particularly attractive method of this type is based on achieving 
nonlinearity by employing the operation of multiplicative inversion with re- 
spect to a prime modulus. This inversive congruential method was introduced 
by Eichenauer and Lehn [2]. 

For an arbitrary finite field Fq with q elements, let F* be the multiplicative q~~~~~~~~ 
group of nonzero elements of F . For c E F* let c denote the inverse of c 

q _ q 

in the group Fq*, and for 0 E F put 0=0. The group F* is cyclic, and a 
generator of this group is called a primitive element of Fq . A monic polynomial 
over F of degree d > 1 is called a primitive polynomial over Fq if it has a 
primitive element of the extension field Fqd as a root. We refer to [4, Chapter 
3] for information on primitive polynomials. We note, in particular, that a 
primitive polynomial over Fq is always irreducible over Fq. 
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We can now describe the inversive congruential method. For a prime p > 5 
we consider the finite field F which we can also identify with the set Fp= 

p~~~~~~~~~~~~~~~ 
{O, 1,. .. p - } of integers. Choose a, b E F in such a way that x2 _ bx+a 
is a primitive polynomial over Fp . Then we generate a sequence y0, y1, ... 

of elements of Fp by the recursion 

(1) yn+=--aY? + b mod p for n=O, = , I. 

The numbers xn = Yn/p, n = 0, 1,..., in the interval [0, 1) are called 
inversive congruential pseudorandom numbers. In practice, p is taken to be a 

3 1 large,prime such as p = 2 -.1. 
It was shown in [2] that the sequence yo, y1, ... (and thus the sequence 

xo, xl, ... ) is purely periodic with period length p and that {yo, y1I .... 

yp_1} = ?. From the work of Eichenauer, Grothe, and Lehn [1] and the 
author [7] it follows that inversive congruential pseudorandom numbers pass 
the k-dimensional lattice test for all dimensions k < (p + 1)/2. 

The behavior of these pseudorandom numbers under the k-dimensional se- 
rial test was investigated in [8]. We recall that this test amounts to considering 
the discrepancy of k-tuples of successive pseudorandom numbers. For N ar- 
bitrary points to, , I tN - I e [0, 1)k, k > 1, we define the discrepancy 

DN(tO, ti , .** , t-) = SUP IFN(J) V(J)I, 

k 
where the supremum is extended over all subintervals J of [0, 1) , FN(J) is 
N I times the number of terms among to, t1, ...,t falling into J, and 
V(J) denotes the k-dimensional volume of J. If xo, xl,... is a sequence 
of inversive-congruential pseudorandom numbers with modulus p, then we 
consider the points 

xf =(x , xf+l,,xfl+k_l) 
E 

[O, 1) for n =0, 1,..,p- 
and we write 

Dp') = Dp(xO,xI,... ,xp1) 

for their discrepancy. It was proved in [8] that D(k) - 

O(p 1/2(logp)k) for 
p 

2 < k < p, where the implied constant is absolute. In the following we establish 
lower bounds for D (k) which show that the upper bound is essentially best 

p 
possible. We let X be Euler's totient function and w(m) be the number of 
different prime factors of a positive integer m. 

Theorem 1. For any prime p > 5 there are at least q(p + 1) primitive polyno- 
mials x - bx + a over Fp such that for the corresponding inversive congruential 
pseudorandom numbers we have 

D() > 1(p -1/2 -2p3/S) for all k > 2. 
" 27r +4~ 
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Theorem 2. Let p > 5 be a prime, and let 0 < t < 1 . Then there are more than 
A P(t)(p2 _ 1)/2 primitive polynomials X2 - bx + a over F such that for the 
corresponding inversive congruential pseudorandom numbers we have 

D(k) > p"t p-2 for all k > 2, 

where 
( -t2)p - (pl/2 + 2)2W((p-) 

Ap (t) = - ( _ t2 1/2 

These results demonstrate that for any p there exist parameters in the inver- 
sive congruential method such that D(k) is at least of the order of magnitude 

p-l/2 for all k > 2. Therefore, the upper bound D(k) = O(p-1/2(logp)k) is in 
p 

general best possible up to the logarithmic factor. The fact that D(k) can be as 
p 

large as p -1/2 in order of magnitude shows that there is a considerable amount 
of irregularity in the sequence of pseudorandom numbers, a feature which can 
be advantageous for various simulation purposes. In contrast, for the linear 
congruential method with prime modulus p, it is known by the results of [5, 
6] that, on the average, the k-dimensional discrepancy over the full period is at 
most of the order of magnitude p I times a logarithmic factor, and so there is 
substantially less irregularity in this case. 

Theorem 2 gives more precise information in the following sense. We note, 
first of all, that it follows from well-known results of number theory [3, pp. 260, 
359] that 2@(m) = O(mc) for every e > 0 (see also the proof of Lemma 5 for 
an elementary effective bound). Thus, for fixed t we have 

lim Ap (t) = 2> 0. 

Furthermore, the total number of primitive polynomials over Fp of degree 2 

is given by b(p2 _ 1)/2 according to [4, Theorems 3.5 and 3.16]. Therefore, 
Theorem 2 says that for large p there is a positive proportion of the admissible 
parameter sets in the inversive congruential method for which D(k) is at least p 
of the order of magnitude p'12 for all k > 2. 

To understand the proofs of our theorems it may be helpful to remark that 
if x2 - bx + a is a primitive polynomial over Fq, then a must be a primitive 
element of Fq . To see this, note that this primitive quadratic polynomial has a 
primitive element a of F 2 as a root, hence the polynomial has the factorization q 

x2 -bx+a = (x-a)(x-a q) . This implies a = a +, and since aq+I has 
order q - 1 in the group F*, this yields the desired conclusion. We note also 

that b # 0, for otherwise a + a = 0, hence a2( l) -1 a contradiction to a 
being a primitive element of F2 . q 

In ?2 we show several auxiliary results, some of which may be of independent 
interest. The proof of Theorems 1 and 2 is completed in ?3. 
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2. AUXILIARY RESULTS 

We write e(u) = e27iu for real u and u v for the standard inner product of 
k 

U, VEIR 

Lemma 1. Let to, tl, ...,tN1 E [O, l)k k > 1, with discrepancy DN = 

DN(to, tl, ..., tN ) .Then for any nonzero h = (hl, .. .,hk) E Zkwe have 

N-1 2 t7 + 1 ) 1 ) .k 

n=O 1=1 

where m is the number of nonzero coordinates of h. 

Proof. Like any complex number, the sum in question can be represented in 
the form 

N-1 N-1 

E e(h tn) = e(f9) ,e(h -t") 
n=O n=O 

for some real 0. Therefore, 
N-1 N-1 

E e(h t,) = Ee(h t,-?), 
n=O n=O 

and taking real parts we get 

N-1 N-1 

e(htn) = cos27r(h* tn - 0) 
n=o n=O 

The desired bound follows now from an inequality in [6, p. 64, last para- 
graph]. 0 

For a nontrivial additive character X of F and for a E F*, we define the 
character sum 

(2) K(X ,a) = E x(c + ac). 
cEFq 

By changing c into -c in the summation, we see that K(X, a) is always real. 
Note that X(c+ d) = X (c) X(d) for all c, d e Fq by the definition of an additive 
character, and that >cEF. X(c) = 0 by [4, p. 192]. 

Lemma 2. For any nontrivial X we have ZaEF K(%, a)q = 

Proof. We have 

K(X a)2 x (c +d +a( + d)) 
aEF*F aEF* c, dEFq 

= E x(c+d) E x(a(j?d)). 
c, dEFq aEF 



INVERSIVE CONGRUENTIAL PSEUDORANDOM NUMBERS 281 

The inner sum is equal to -l if c + d # 0 and equal to q - 1 if + d= O, 
i.e., if c + d = 0. Thus, 

Z K(X, a)2 = (q- l)q- E X(c+d) 
aEFq* c, dEFq 

c+d3O0 
2 

= (q- l)q- : x(c+d)+q=q . 0 
c ,dEFq 

For a nontrivial multiplicative character Vi of Fq we define the Gaussian 
sum 

G(VI X) = (c)%(c) 
cEFq 

and the Jacobi sum 

J(tJ)= (C(l -C)), 
cEFq 

where we use the convention V/(0) = 0. The conjugate character V 1 of V/ is 

defined by V fI(c) = Vt () for c e Fq . Note that y (cd) = yg(c)yi(d) for all c, 

d e Fq by the definition of a multiplicative character, and that ZcEF tV(c) 0 
q~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

by [4, p. 205]. 

Lemma 3. For any nontrivial X and V we have 

S X(c+d)y(c+d)=G(y,,X)(J(y)+2). 
c, dEFq 

Proof. For c, d E Fq we have 

{ 5v(c + d)(cd) if cd -, 
(Z~+ d 

V (c +q/ d) if cd=0. 

Therefore, 

,X(c +d)M I-' (c+d) 
c,dEFq 

= 2G(yi, x) + 5 x(c + d)yv '(c + d)yi(cd) 
c,dEF*q 

= 2G(l,X) + 5 x(c+d)y' l(c+d)qi(cd). 
c,dEFq 
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With the substitution c + d = f we get 

, (c +d)y V/-(c +d)q/ (cd) 
c, dEFq 

- > x (f)v7-(f)'(c(f - C)) 
C, fEFq 

- >Z x(f)v'(f) EV (c(f - c)) 
f EFq CEFq 

- E x(f)v- Y (f) E ig(cf(f - cf)) 
feFq cEqFq 

- >11 x(f)v'(f) > qi(c(l - c)) = G(q/, X)J(ty). El 
feEF* CEFq 

The group of multiplicative characters of Fq is isomorphic to Fq* < and hence 
cyclic of order q - 1 . For a positive divisor m of q - 1 , let Hq(m) be the set 
of characters of order m in this character group. Let Pq be the set of primitive 
elements of Fq. Furthermore, we write , for the Moebius function and Zmjn 
for a sum over the positive divisors m of a positive integer n. 

Lemma 4. For any nontrivial X we have 

E K(%, a)2 = (q -1l) q2 + '(q -1) __um 

aEPq ql I (q- 1) 
m>1 

G(V, ,)(J(q)+ 2). 
EHq (m) 

Proof. By a result in [4, p. 258] we have for a e F* 
q 

___q -g(m)a) 1 if aEP 

mj(q-1) ) vEHq(m) { 

Therefore, 

S K(~,a)2= S ~2(q -1 1) i g(m) 2,(a)I K(X, a) 

aEP aEF* 
q 

m[(q-1) (m 
vEHq(m) 

m (q-1) EHq(m) aEFq 

_ (q - 1) 2 q$(q - 1) 

q- q + q- I 

Zd ~(m)2 m>1 q(m) E V (a)K(X a) , 

m> q1) v EH,, (m) aEF.* 
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where we have split off the contribution for m = 1 and used Lemma 2. Fur- 
thermore, for any nontrivial yi we get 

E y,(a)K(X, a)2 = j vi(a) E x(c+d+a(c?+d)) 
aEFq aEF* c, dCeF 

qEF q q 

= x(c+d) ,j (a) (a( + 
c, dEF4 aEF* 

q q 

= L x(c+d) 1j y,(a)+ E X(c+d) (a)X(a ( +) 
c, dEFq aEF c, dEFq aEF* 

= , X(c + d) , V(a)v- I( + a)X(a) 
c, dEFq aEF* 

G(V, X) : X(c +d) V- 1(c +d= G(VI, X) 2(J(V) +2) 
c dEFq 

where we used Lemma 3 in the last step. 0 

Lemma 5. For any nontrivial X there exists an a E Pq with IK(X, a) > ql /2- 

2q215. 

Proof. We note that for nontrivial q/ and X we have IG(v,, X)I = q 1/2 by [4, 
Theorem 5.11] and IJ(')I < q1/2 by [4, Theorem 5.22]. Using also card(Hq(m)) 
= 0(m), from Lemma 4 we obtain 

ZK(X, a)2 > (q-l) q2 _ (q- 1) # u(m)jq(q1/2+2) 

aEPq ml(q- 1) 
m>1 

> q(q -l ) q2 _ $(q - l) q(q1 /2 + 2) 

ml(q-1) 

The last sum is easily seen to be 2w(q-1), hence 

(3) K(X, a)2 > (q- 1)q 2 _ (q -l) q(ql/2+2)2(q- 

aEP ql q q- q( 
aE3q 

We claim that for every positive integer m we have 2w(m) < (2.4)m?357 . This is 
trivial for m = 1 . For m > 1, let m = P, epr be the canonical factorization 
of m. Then 

2(m) =2-r = M(log2)/Iog7 t 2 < m0.357 2 pe (log 2)/ log 7 Il (log2)/Iog7 

In the last product the factors are < 1 for primes pj > 7, hence 

2 0(< 30(g8 2 0.357 < (2.4)m357 
30 (log 2)/ log 7 <() 
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Together with (3) we get 

E K(X, a)2> q(q l)q (q - (2 4)q? 357 (q 1/2 +2)). 
a EPqq 

If q < 210, then the result of Lemma 5 is trivial since the lower bound is 
negative. Thus, we can assume q > 210 in the rest of the proof. Then 

4q 1 - (2.4)q057 (1 + 2q1/2) > 4q/10- (2.5 5) q0057 

> 8 - (2.55)20 57 > 4, 

hence 

q - (2.4)q0357 (q12 + 2) > (q112 _2q-25)2 

and so 

E K(X, a )2 > 
q(q - l)q 1/ _2q 2/5)2 

aEPq 
q 1 

Since card(Pq) = q(q - 1), the desired result follows. o 

Lemma 6. Let X be nontrivial, and let 0 < t < 1. Then there are more than 
Aq(t)q(q - 1) values of a E Pq for which IK(X, a)l > tq /2, where 

'Aq(t) 
(1 - t2 )q - (ql/2 + 2)2wco(q-1) 

q ( (4-t= )q+4q112+I 
Proof. We can assume that Aq(t) > 0, for otherwise the result is trivial. We 
proceed by contradiction and suppose that IK(X, a)l > tql/2 holds for at most 
Aq(t)q(q - 1) values of a E Pq. Then IK(X, a)l < tq1/2 holds for at least 
( -Aq(t))q$(q- 1) values of a E Pq . Now we note that the sum K(X, a) differs 
from a Kloosterman sum [4, Definition 5.42] only in one respect, namely that 
in (2) we also take into account the contribution from c = 0 E Fq . Since this 
contribution is equal to 1, it follows from a classical bound for Kloosterman 
sums [4, Theorem 5.45] that 

IK(X, a)l < 2q1/2 + l for alla E F*. 
q 

Therefore, we obtain 

E K(X, a)2 < (1 - Aq.(t))O(q - l)t2 q + Aq(t)o(q - 1)(2q1/2 + 1)2 
aEPq 

=-$(q - l)(q 2 (ql/2 + 2)2 o(q-l) 

< (q 
- 
I q2 _ o(q -1) q(ql /2 + 2)2 w(q- 1) whqi- q q- 

which is a contradiction to (3). 0 
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3. PROOF OF THEOREMS 1 AND 2 

First we apply Lemma 1 with k > 2, N = p, tn =Xn for O < n <p- 1, 
and h = (1, -1, O, . ) E Z . This yields 

(k) 1 P-l 

PDP>2i + 4 Le(h Xn) 

Next we observe that from (1) we get 

S e(h *xn) = | e(Xn-xXn+) = Z e (-(Yn-Yn+ )) 
n=o n=o n=o 

= e (-Yn +aYn - b)) = e +a 
n=on= 

Let X be the nontrivial additive character of Fp given by x(c) = e(c/p) for 
c E Fp . Then, since yo, y1, ... , yp- run through Fp, a comparison with (2) 
shows that 

p-l 

E: e(h Xn) = IK(X, a)l , 
n=O 

and so 

(4) pD(k) 1 K( a)l for all k > 2. 

Therefore, if the primitive polynomial x2 - bx + a over Fp is chosen in such 
a way that for the primitive element a E Fp we have the lower bound for 
IK(x, a)I in Lemnia 5 (with q = p ), then from (4) we obtain the lower bound 
for D(k) in Theorem 1. Similarly, the lower bound for IK(x, a)l in Lemma 

6 (with q = p ) yields the lower bound for D(k) in Theorem 2. To prove p 
Theorems 1 and 2 in their full extent, it remains to determine for each given 
primitive element a E Fp the number of primitive polynomials over Fp of the 

form x2 - bx + a. This is done in the following lemma for any finite field F 

q~~~~~~~~~q 
Lemma 7. For any primitive element a E Fq there are exactly O(q 2_ 1)20(q- 1 ) 

primitive polynomials over Fq of the form x - bx + a. 
2 Proof. As we noted in ? 1, if x2 - bx + a is primitive over Fq, then for some 

primitive element a E Fq2 we have x2 - bx + a = (x - a)(x - aq), hence 

aq+ = a. Since the primitive elements a and a determine the same prim- 
itive polynomial x - bx + a, it follows that the desired number of primitive 
polynomials is given by 2S(a) , where S(a) is the number of primitive elements 
a E q2 with aq+1 = a. For any A E Fq* we write ord(A) for the order of A 

in the group F*. Since ord(a) = q - 1 and F2 iS cyclic, we have a = fq+ 
q- 
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for some f8 E F2 . Let y be a fixed primitive element of Fq2; then 8 yh for qq 
some integer h. Now 

((q+1)h q-1 q - 1 = ord(a) = ord(y )= gcd(q2 - 1, (q + 1)h)' 

thus gcd(q - 1, (q + 1)h) = q + 1, and so gcd(q - 1, h) = 1. For A E F*2 we q 

have Aq+1 = a if and only if (,6)q+1 = 1, which holds precisely if f,8 = y (q -)j 
for some integer j. Thus the elements A E F*2 with Aq+1 = a are exactly those q 

of the form A = yh+(q- )j , where h is fixed and j varies. Consequently, S(a) is 
2 equal to the number of integers j mod (q+ 1) with gcd(q - 1, h+(q- 1)j) = 1 . 

Since gcd(q - 1, h) = 1, we have gcd(q - 1, h + (q - 1)j)= 1 if and only if 
gcd(q + 1, h + (q - 1)j) = 1. 

First let q be even. Then gcd(q + 1, q - 1) = 1, and so for every integer 
m mod (q + 1) with gcd(q + 1, m) = 1 we can solve the congruence h + 
(q - 1)j m mod (q + 1) uniquely for j mod (q + 1). Therefore, S(a) = 

q(q + 1) =q(q2 _ 1)/q(q - 1). 
Now let q be odd, hence gcd(q + 1, q - 1) = 2. For every integer m 

mod (q + 1) with gcd(q + 1, m) = 1 consider the congruence h + (q - 1)j = 
m mod (q + 1), or equivalently (q - 1)j ] m - h mod (q + 1). Since 
gcd(q + 1, m) = gcd(q - 1, h) = 1, both m and h are odd, and so the last 
congruence has exactly two solutions j mod (q + 1) for every choice of m. 
Therefore S(a) = 20(q + 1) = -(q 1)/q!(q - 1) . o 

It follows from Lemma 7 and the preceding discussion that in Theorem 1 
we get at least q(p2 - 1)/20(p - 1) = q(p + 1) suitable primitive polynomials. 
Similarly, together with Lemma 6, we see that in Theorem 2 we get more than 

o 
2 

- 1) (P2 _1) 

20(p - 1) =2 

suitable primitive polynomials. 
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